

•

•

•

•

○
○
○

❏ We would recommend using a mix of REST and Microservice based architecture that would
utilise event driven systems for messaging and notifications, rather than it being one vs the
other. The nature of the system would seem to lend itself to distributed architecture, and there
are clear distinctions between the level of service required between a grid and a data
warehouse.

❏ Stored procedures seem to be being used to raise notifications/invalidations - they should be
replaced or wrapped by Go/Java/other middleware tier for more flexibility/ability integration.

❏ Database scalability - is the iVector database shardable or distributable? We imagine the
stored procs would limit this - further investigation is advised. Distribution, sharding,
replication and backups is a must.

❏ The FSA looks inherently single datacentre/availability zone - what are the DR scenarios? Is
Active/Active functioning ever desired? While the iVector system is in place, Active/Active for
bookings would be unlikely, but the grid/search system should definitely be possible to be
active/active with an appropriate local cache layer.

❏ The security model (authentication/authorisation etc) for clients is not clear. Given the number
of potential third parties that should be able to call the system, some form of authentication,
ACL is required. Additionally crucial systems communication could be encrypted.

❏ What is the proposed purpose/use of the CDN? It’s normally for public data unless you are
proposing to layer some sort of API management in front of it.

❏ Most people would consider C# as a “sunset” language now. Additionally choosing a
Microsoft solution will determine the operating system whereas languages like Java or
Golang should enable additional technological solutions like virtual system containerization.

❏ A micro services software design paradigm is advocated - particularly if a stateless message
based system is implemented.

…
❏ The investment to deploy a grid approach is high (£250k). Is it value for money?
❏ It goes without saying that there is better reliability/scalability/distributability out of a non

shared memory solution if everything can fit in single instance memory.
❏ We think it's questionable overall whether there is actually a need for a Grid - given the

dataset (20GB) fits trivially in memory for most modern servers/virtual machines, the correct
selection of indexes and data structures would probably double this - let’s say 64GB to be
safe - still safely within commodity box sizing.

❏ The use case described could probably be achieved using a grid approach - although it feels
like the scenario is composited of a number of results with enhancements which are probably
distinct from the grid requirement itself.

❏ Amazon Solutions like Lambda or instance auto scaling feels like a natural solution -
especially if it is a periodic burst up/down scenario described.

❏ If it's largely a batch processing challenge then there are probably more efficient ways of
doing it.

❏ Remaining on .Net, the use of a functional language like F# would be an option to take
advantage of single server multiple cores without necessarily needing to grid process (with its
additional overhead, brittleness and complexity).

❏ We would advise a consideration of different languages other than F#, C# or .NET as they will
lock down the choice of the operating system though.

❏ It would be necessary to put an explicit API over the top of the compute grid infrastructure.
❏ It would appear that the grid is largely "read only" from a user/search perspective, even if the

underlying data is volatile. This would imply a level of “cacheability” of search results - would
be good to do some light weight benchmarking to see whether precomputing results gains
anything versus ad hoc computation + caching.

❏ What sort of loads are expected? There is an implicit assumption that the load will be high
without any traffic shape information e.g. if the searches are largely for the same result vs
each search is completely bespoke. It’s unlikely that all searches are completely different (eg
loading a default page will probably yield the same data for most clients).

❏ Different caching methods for different scenarios are advised. Pages can be cached partially
and dynamic content inserted. Technologies like Varnish are worth considering.

❏ Is there any natural sharding of the data? Data resilience must be provided. Sharding,
replications and backups must be in place to provide robustness.

❏ What’s the data caching strategy? I’m sure there is one but it’s hard to evaluate the potential
solutions without understanding it.

❏ Is there any requirement for personalised searches? How does this affect the dimensions of
the data being searched.

❏ Does GridGain offer ACID compliance? It seems to.
❏ What is the default search engine? Are we considering using different search engines, SOLR,

Elastic Search. Is there a need for any additional features like document similarity, full text
search?

❏ Are there any infrastructure constraints? Is the hosting solution limited to privately hosted
servers or is it possible to use cloud based hosting like AWS, Rackspace, Digital Ocean.
Were the infrastructure configuration tools taken into account? Puppet, Chef, Ansible?

❏ Why is an ESB being proposed? The modern trend is for fast dumb pipes. An ESB looks like
overkill for this use case. We’re not clear why an ESB over a message bus (eg
RabbitMQ/NSQ etc) would be necessary - the implicit assumption about reliable/transactional
delivery needs to be investigated further to establish whether this is the only usage pattern -
far more likely that there is are a number of service levels/quality of services involved.

❏ Are we conflating 3 activities?

Namely
 - Notifications which would require an action by a downstream system.
 - Cache updates.
 - Firehose-like functionality to populate the Data Warehouse.

❏ Third party data availability data should be distributed via the message bus/firehose - any
"grid" should ideally be fed purely via this - also allows testing of new deployments of the grid
without having to replicate everything. A cache/microservice for reading from cold for a new
startup on the grid is needed as well.

❏ Having Stored procs place things on the message bus reliably will significantly increase
latency of book() etc calls since there will need to be a distributed 2 phase commit to do this
atomically.

❏ There should be some well defined concepts for what to place on the message bus - an
implicit assumption is interoperability between message creators/consumers.

https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-1/

https://sudo.hailoapp.com/devops/2015/07/01/microservices-a-devops-architecture-at-hailo/

http://www.infoq.com/articles/microservices-gilt-hailo-nearform

http://www.computing.co.uk/ctg/news/2404340/hailo-we-built-hailo-on-aws-and-here-s-why-we-ll-k
eep-using-it

http://www.slideshare.net/nathariel/aws-summitlondonhailo2014

http://martinfowler.com/articles/lmax.html

https://GRO.TEAM/2-0-projects-always-a-graveyard-for-ambition/

https://GRO.TEAM/how-to-select-new-technologies/

https://sudo.hailoapp.com/services/2015/03/09/journey-into-a-microservice-world-part-1/
https://sudo.hailoapp.com/devops/2015/07/01/microservices-a-devops-architecture-at-hailo/
http://www.infoq.com/articles/microservices-gilt-hailo-nearform
http://www.computing.co.uk/ctg/news/2404340/hailo-we-built-hailo-on-aws-and-here-s-why-we-ll-keep-using-it
http://www.computing.co.uk/ctg/news/2404340/hailo-we-built-hailo-on-aws-and-here-s-why-we-ll-keep-using-it
http://www.slideshare.net/nathariel/aws-summitlondonhailo2014
http://martinfowler.com/articles/lmax.html
http://www.teamcxo.com/2-0-projects-always-a-graveyard-for-ambition/

